THE IDENTIFICATION OF NOVEL SMALL MOLECULE COMPOUNDS WITH POTENT ANTI-FIBROTIC PROPERTIES BY PHOTONIC SCREENING OF PRIMARY HUMAN STELLATE CELLS

Carole BELANGER 1, Mathieu DUBERNET 1, Emilie NEGRO 1, Raphaël DARTELL 1, Dean W. HUM 1, Bart STAELS 1, Robert WALCZAK 1

1 GENFIT SA, Loos, France 2 INSERM UMR1011, Univ. Lille, Institut Pasteur de Lille, Lille, France

INTRODUCTION

Fibrosis is a devastating outcome of many chronic liver diseases, where an excess deposition of extracellular matrix proteins impairs liver function. There is presently no approved therapeutic approach for fibrosis in humans. Although a number of small molecules and biologics have shown efficacy in preclinical models of liver fibrosis, there is presently no approved effective therapy for liver fibrosis in humans. In a growing effort to fulfill this unmet medical need, GENFIT used an unbiased phenotypic screening approach to identify novel anti-fibrotic molecules. A phenotypic screening method was implemented to search for small molecule compounds that have the ability to reduce the expression of α-SMA in TGF-β stimulated HSC. This screening of a library of 70,000 small molecules, including both new chemical entities and FDA-approved drugs, led to the identification of structurally diverse compounds with potential anti-fibrotic properties. Combined with good efficacy and no toxicity, these hit compounds were further prioritized with respect to their pro-fibrogenic and drug properties. Accordingly, the anti-fibrotic efficacy of novel test compounds was assessed in a newly optimized model of advanced fibrosis of the severe fibrotic mouse.

AIMS

- To identify new drug candidates with potential anti-fibrotic properties by using a relevant and unbiased phenotypic screening approach in a library that contains both new chemical entities (NCEs) and known FDA-approved drugs.
- To confirm the efficacy of the prioritized candidates in animal models of liver fibrosis.

METHODS

- **PHOTONIC MTS-SET UP AND VALIDATION**
 - Photonic screening approach was implemented to identify small molecules with anti-fibrotic properties in hepatic stellate cells.
 - (A) General outline of the semi-robotic photonic screening assay. The HSC were preincubated for 3hr with the compounds followed by TGF-β stimulation. The measure of α-SMA was performed by a home-made sandwich ELISA on the HSC lysate.
 - (B) A TGF-β inhibitor (SMAF2137) served as a positive control for inhibition of α-SMA production in TGF-β stimulated HSC. The factor of 0.5 was obtained on the master screen test, thus confirming the validity of the method.
 - (C) The equation used to measure the inhibition percentage of α-SMA:
 \[\text{Normalized percent inhibition} = \left(\frac{\text{Absorbance} \text{ of sample} - \text{Absorbance of SMAF2137}}{\text{Absorbance} \text{ of TGF-β control} - \text{Absorbance of SMAF2137}} \right) \times 100 \]

- **STATISTICAL ANALYSIS**
 - Data is shown as Mean ± SEM.
 - 5 x 10^5 cells were seeded in 384-well plates in 100 μL of DMEM + 10% FCS. The cells were treated with a panel of hit compounds for 72hrs. The data is represented as mean ± SEM.

- **STATISTICAL ANALYSIS**
 - Data is shown as Mean ± SEM.
 - 5 x 10^5 cells were seeded in 384-well plates in 100 μL of DMEM + 10% FCS. The cells were treated with a panel of hit compounds for 72hrs. The data is represented as mean ± SEM.

CONCLUSION

- A MTS-compatible phenotypic assay in hepatic stellate cells was successfully used to identify structurally diverse compounds that confer strong anti-fibrotic properties.
- Several candidates that obey to classical drug-likeness properties were identified among the hit compounds with strong anti-fibrotic activity in HSCs. Anti-fibrotic properties of a prioritized hit compound (GFE2137) were confirmed in the liver fibrosis model in vivo.
- Other promising lead candidates will be further investigated in animal models of fibrosis. As well, complementary studies aiming to define the mechanism of action and molecular targets will be undertaken.
- Drug repositioning is becoming a popular alternative to classical drug discovery processes. Our phenotypic screening approach has led to the discovery of known FDA-approved drugs with unsuspected anti-fibrotic properties.

REFERENCES

1. Carole Belanger, Mathieu Dubernet, Emilie Negro, Raphaël Darreell, Dean W. Hum, Bart Staels, Robert Walczak. Corresponding author’s email: robert.walczak@genfit.com

Financial disclosures: Carole Belanger: Genfit employee; Mathieu Dubernet: Genfit employee; Emilie Negro: Genfit employee; Raphaël Darreell: Genfit employee; Dean W. Hum: Genfit employee; Bart Staels: Genfit employee; Robert Walczak: Genfit advisor; Robert Walczak: Genfit employee - Financial disclosure: Carole Belanger: Genfit employee; Mathieu Dubernet: Genfit employee; Emilie Negro: Genfit employee; Raphaël Darreell: Genfit employee; Dean W. Hum: Genfit employee; Bart Staels: Genfit employee; Robert Walczak: Genfit advisor; Robert Walczak: Genfit employee.